

ANIMAL DIVERSITY

EVOLUTION THEORY INTRODUCED.

CRITERIA USED for CLASSIFICATION of ANIMALS.

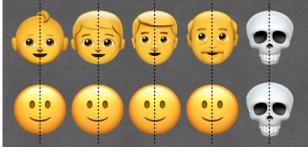
INTRODUCTION

THEORY of Evolution: All living things came from <u>one</u> cell that formed *nearly* 4 bya. **Different** conditions across the world killed some of their **different** plans – the survivors (and their specific plans) carried on living in that area. This resulted in <u>new</u> variations of that original plan. (Evolution = Change).

Some (like some *Protists*) have survived in that simple form until now. Others have had to adapt (evolve) to become more complex so as to survive.

Can this claim be <u>proved</u> right? **NO**. Can it be <u>proved</u> wrong? **NO**. So it remains an unproved **THEORY** of what <u>might</u> have happened.

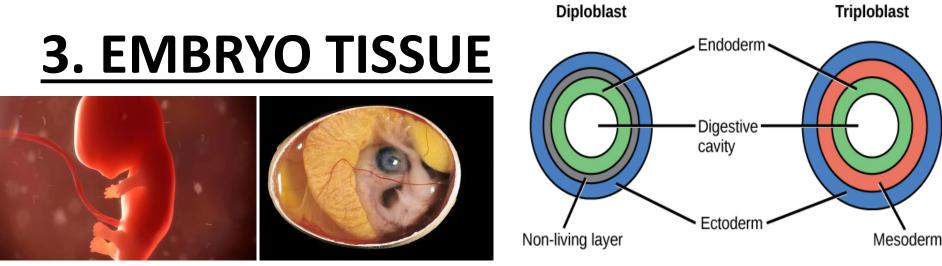
BODY FEATURES USED FOR CLASSIFICATION (Table p. 38)



There are **30** Animal *Phyla*. We will study only **6**. We will start with the simplest, and build up to the most complex. Classification is based on <u>**6**</u> characteristics:

- 1. Symmetry = how **geometric** is its shape?
- 2. Cephalization = how developed is its **head**/brain?
- 3. Does its **embryo** have 2 layers of <u>tissue</u>, or 3?
- 4. Does it have a <u>coelom</u> cavity in its middle layer?
- 5. Does its **<u>gut</u>** have <u>one</u> **opening**, or <u>two</u>?
- 6. If it has **blood**, is its system **open**, or **closed**?

1. SYMMETRY


Asymmetry = No fixed shape = no symmetry.
Simplest. Often sessile = stuck in one place.

- Radial Symmetry = Body is built around a central point. Mirror images result if you slice through this point in any direction. These animals are often sessile (= stay in one spot and do not move).
- BiLateral Symmetry = It only has <u>one</u> line you can slice through to get a mirror image of left and right.

2. CEPHALIZATION

- This refers to having nervous tissue (brain tissue) centralised into a head.
- Only **bilaterally symmetrical** animals have some form of head.
- It occurs at the *anterior* (front) part of the body.
- Nerve cells make up the "brain" component.
- Many sense organs are concentrated here.
- Designed for the animal to detect food and danger animal can respond quickly.

- The embryo has the full plan of that animal.
- Simple animals have two tissue layers around the gut. So a <u>Diploblast</u> has an Outer EctoDermal layer and an Inner EndoDerm.
- The more advanced embryos have three tissue layers around the gut. <u>Triploblasts</u> have the middle MesoDerm, in which organs can develop.

4. COELOM Roundworm

- It is only found in the more advanced triploblasts.
- It is a fluid-filled cavity inside the **mesoderm**.
- This allows muscles around the gut to operate separately from the outer muscles of the body.

Advantages:

ectoderm mesoderm

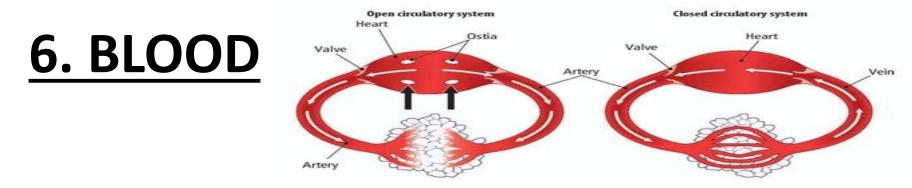
mesentarv

endoderm coelom

- 1. Can act as a Hydrostatic Skeleton.
- 2. Easy for diffusion to happen through this liquid.
- 3. Helps with locomotion: consider the earthworm.
- 4. Organs are now more free to develop in an unrestricted way.

5. GUT OPENINGS

- Simple animals have a blind gut food (and wastes) come in (and leave) through the same hole.
- Advanced animals have a **through gut:** food goes from mouth \rightarrow gut \rightarrow anus.


Advantages of a Through-gut:

1. Can ingest and egest at the same time.

mouth

digestive cavity

- 2. Food and wastes are **not** mixed together.
- 3. Systems can operate throughout the full process.
- 4. Different parts are **specialised** for different jobs.

- Some animals are so simple that diffusion is adequate.
- The more advanced animals need **blood** to transport substances through their body.
- All organs in the simpler of <u>these</u> animals are in contact with a room/chamber called their *haemocoel* – they get all their needs and excretion through this <u>OPEN</u> <u>blood system</u>. The heart pumps blood from there to the intake or excretion areas.
- Blood for more advanced animals is <u>CLOSED</u> it never leaves its blood-vessels. Substances diffuse in and out of the blood. It is easier to circulate the blood, so is more efficient.

QUESTIONS Page 26

Question 1

26 6 X [1] = [6]

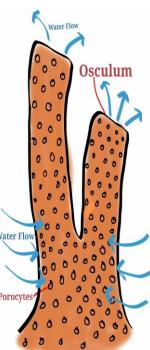
[3]

[3]

 Radial
Diploblast
Coelom
Throughgut
Open
Cephalisation

<u>Question 2</u>

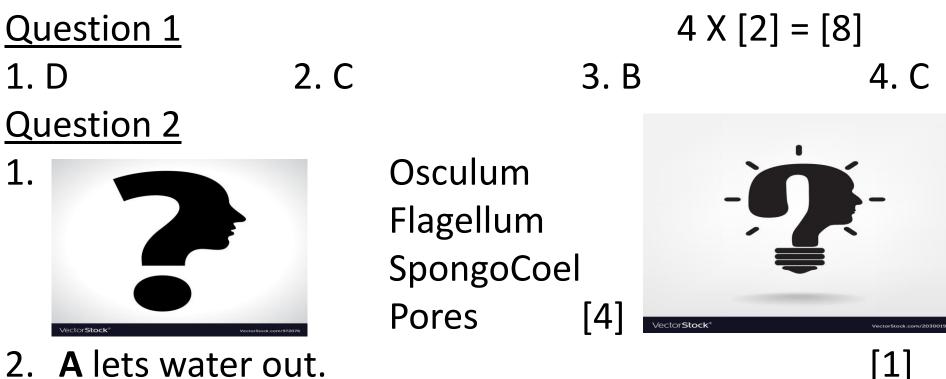
- 1. 1=EctoDerm2=Coelom3. EndoDerm4. Gut5=MesoDerm[5]
- 2. See table page 38 for specific examples:
 - A = TriploBlastic Coelomates
 - B = DiploBlastic
 - C = TriploBlastic Acoelomate
- 3. A: Triploblast. Has coelom.


EXAMPLE: SPONGE

PHYLUM: PORIFERA

Sponge CLASSIFICATION FEATURES

- **SYMMETRY** Asymmetric = no symmetry.
- **CEPHALIZATION** No head = no centralised nerves.
- EMBRYO TISSUE Diploblast = two layers in the embryo (ectoderm and endoderm).
- **COELOM** Acoelomate = has no coelom.
- **GUT OPENINGS** Has no gut at all.
- **BLOOD** Has no blood = relies on diffusion.

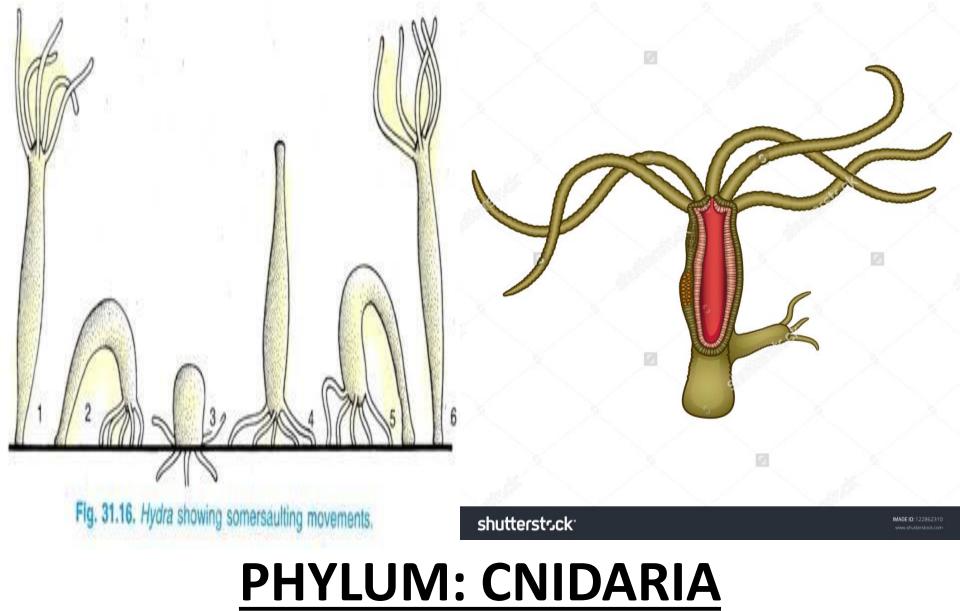

ADDITIONAL INFORMATION

- Are all aquatic. Have pores to let water in.
- Are a collection of cells, in two layers (separated from each other by jelly), with no tissue. Have the shape of a vase.
- Larvae move (are motile), adults do not (sessile).
- Flagella of the spongocoel bring water flowing in through pores, and out through the osculum.
- Bacteria are filtered out of this water as food.
- Sponges are used by humans for washing and cleaning.

Water out Central Sponge Osculum cavity wall Water in Amoeboid cell through, pores Pore Epidermal cell Spicule Central cavity Collar Flagellum Collar cell (choanocyte)

OUR EXAMPLE: SPONGES

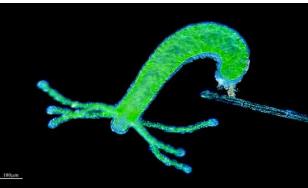
QUESTIONS Page 27



- 2. A lets water out.
 - **C** acts as the HydroStatic skeleton, in which ExtraCellular digestion occurs. [1]

[1]

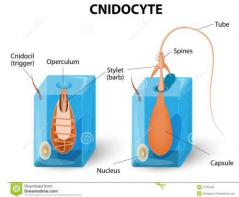
[2]

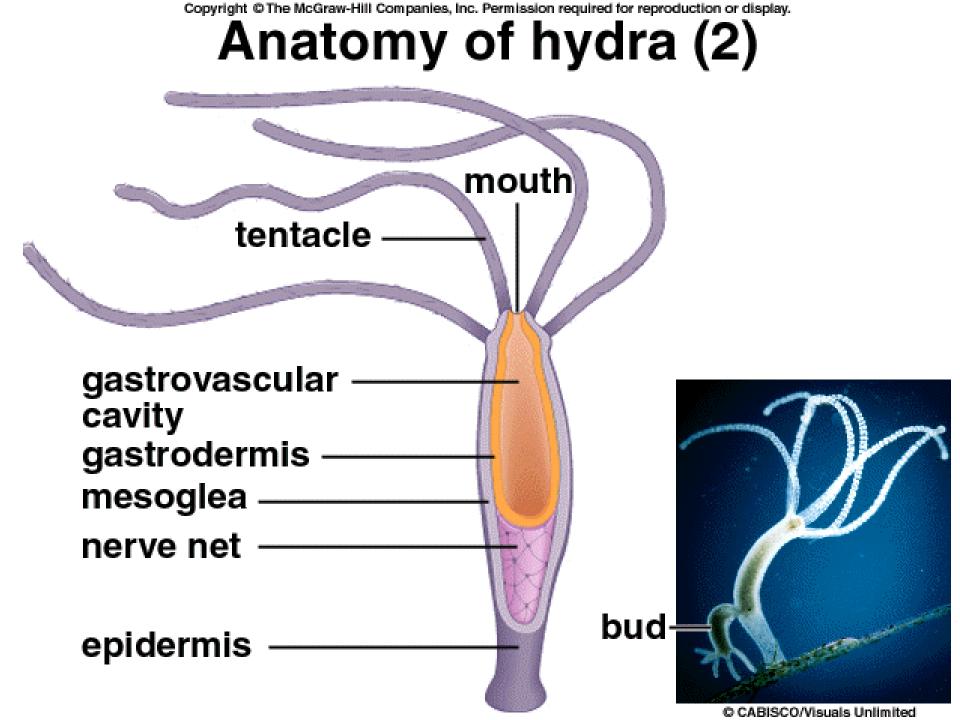

- 3. Asymmetry
- 4. No it has no head, so no centralised brain.

EXAMPLE: HYDRA

CLASSIFICATION FEATURES

- **SYMMETRY** Radial.
- **CEPHALIZATION** No cephalization.
- EMBRYO TISSUE Diploblastic.
- **COELOM** Acoelomate.
- GUT OPENINGS Blind gut = one opening.
- **BLOOD** No blood system.





ADDITIONAL INFORMATION

- Being aquatic, Hydra can only live in water.
- Nematocysts (on their ectoderm) sting their prey, and the tentacles bring them to the mouth. The endoderm then digests it.
- Nerve cells are spread evenly, and can respond to stimuli all round.

- This explains their radial symmetry equally aware of food or dangers all around their body.
- Movement remains random, without sensory organs linked to a central brain.



QUESTIONS Page 28

Question 1

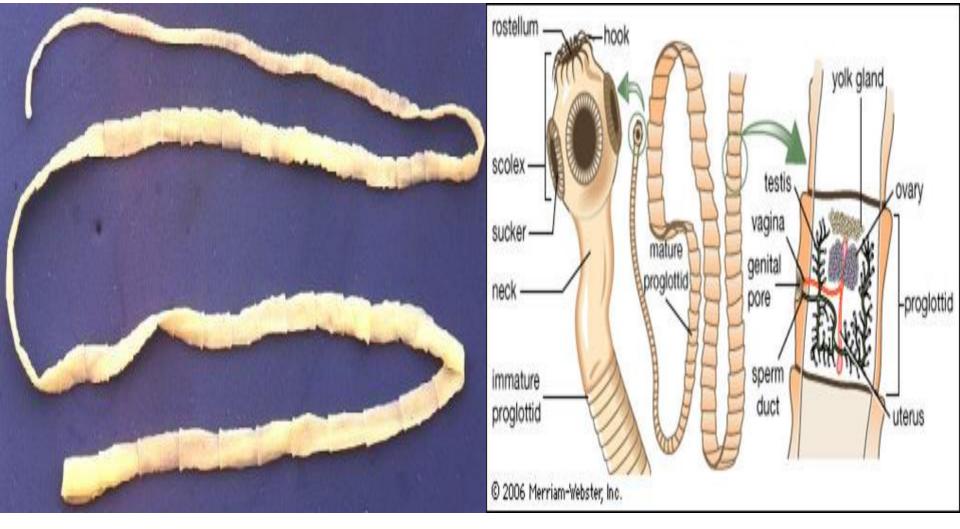
1. Cnidaria

2. HypoStome

[1]

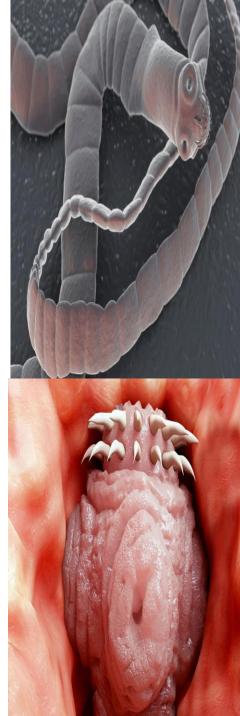
[1]

3. Coelenteron4. Nematocysts5. Mesoglea


Question 2

- 1. A=tentacle B=Mouth D=EctoDerm H=Basal Disc [4]
- 2. A takes food to mouth; and locomotion.
 - **G** is HydroStatic skeleton; and ExtraCellular digestion. [1]
- 3. (a) Radial
 - (b) Can react to food and danger in any direction. [3]
- Diploblastic it only has two tissue layers (EctoDerm and EndoDerm).

(TAENIA SOLIUM)


EXAMPLE: TAPEWORM

PHYLUM: PLATYHELMINTHES

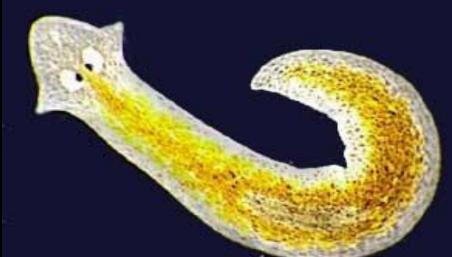
CLASSIFICATION FEATURES

- **SYMMETRY** Bilateral.
- **CEPHALIZATION** Cephalized.
- EMBRYO TISSUE Triploblast.
- COELOM Acoelomate.
- GUT OPENINGS Blind gut.
- **BLOOD** No blood.

ADDITIONAL INFORMATION

- Is a flat aquatic EndoParasite in pig and human.
- Both genders are on one worm = HermAphrodite.
- Its flat shape allows for easy diffusion all round.
- Cuticle stops the host from digesting it while it is in its small intestine.
- Head (scolex) with suckers and hooks. Then neck, and strobila - made up of segments called proglottids.
- Segments are made at its neck. Mature ones are in the middle. Older (gravid) ones at its end have fertilised eggs.
- These segments with eggs break off, and go out of the anus. A pig eats it, and the egg hatches and develops in the pig. A human eats the pig, and the cycle starts all over again in that human's intestines.

Gut (endoderm).


Mesenchyme

Muscle layer (mesoderm)

Ectoderm

Acoelomate

QUESTIONS Page 29

Question 1

 HermAphrodite 2. Pig 4. Scolex 5. Bilateral
 Question 2 5 X [2] = [10]
 1. D 2. D 3. B
 4. B 5. C
 3. Gravid/Strobila
 3. Gravid/Strobila
 5. Grav

5 X [1] = [5] 3. Gravid/Strobila

about and a series and a series of the serie